Неионизирующее излучение

В современном мире нас окружает огромное количество источников электромагнитных полей и излучений. Спектр электромагнитных колебаний по частоте достигает 1021 Гц. В зависимости от энергии фотонов (квантов) его подразделяют на область неионизирующих и ионизирующих излучений. В гигиенической практике к неионизирующим излучениям относят также электрические и магнитные поля. Излучение будет неионизирующим в том случае, если оно не способно разрывать химические связи молекул, то есть не способно образовывать положительно и отрицательно заряженные ионы. Т.к. излучение и его источник очень тесно связаны, то говоря о электромагнитных полях, мы будем подразумевать, где это уместно, действие неионизирующего излучение.

Для начала определимся, что такое электромагнитное поле.

На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.

Электрическое поле

создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.

Магнитное поле

создается при движении электрических зарядов по проводнику.

Для характеристики величины электрического поля

используется понятие напряженность электрического поля

, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля

характеризуется напряженностью магнитного поля

Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция

В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.

По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).

Электромагнитные волны характеризуются длиной волны, обозначение - λ (лямбда). Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются понятием частота, обозначение - f. Международная классификация электромагнитных волн по частотам приведена в таблице.

Международная классификация электромагнитных волн по частотам

Наименование частотного диапазона

Границы диапазона

Наименование волнового диапазона

Границы диапазона

Крайние низкие, КНЧ

3 - 30 Гц

Декамегаметровые

100 - 10 Мм

Сверхнизкие, СНЧ

30 - 300 Гц

Мегаметровые

10 - 1 Мм

Инфранизкие, ИНЧ

0,3 - 3 кГц

Гектокилометровые

1000 - 100 км

Очень низкие, ОНЧ

3 - 30 кГц

Мириаметровые

100 - 10 км

Низкие частоты, НЧ

30 - 300 кГц

Километровые

10 - 1 км

Средние, СЧ

0,3 - 3 МГц

Гектометровые

1 - 0,1 км

Высокие частоты, ВЧ

3 - 30 МГц

Декаметровые

100 - 10 м

Очень высокие, ОВЧ

30 - 300 МГц

Метровые

10 - 1 м

Ультравысокие,УВЧ

0,3 - 3 ГГц

Дециметровые

1 - 0,1 м

Сверхвысокие, СВЧ

3 - 30 ГГц

Сантиметровые

10 - 1 см

Крайне высокие, КВЧ

30 - 300 ГГц

Миллиметровые

10 - 1 мм

Гипервысокие, ГВЧ

300 - 3000 ГГц

Децимиллиметровые

1 - 0,1 мм

Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны.

В "ближней" зоне, или зоне индукции, на расстоянии от источника r < λ ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение.

"Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3 λ . В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1.

В "дальней" зоне излучения устанавливается связь между Е и Н:

Е = 377Н,

где 377 - волновое сопротивление вакуума, Ом.

Поэтому измеряется, как правило, только Е. В российской практике санитарно-гигиенического надзора на частотах выше 300 МГц в "дальней" зоне излучения обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. За рубежом ППЭ обычно измеряется для частот выше 1 ГГц. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.

Введенные в настоящем разделе элементарные понятия о природе ЭМП, его составляющих и единицах измерения достаточны для восприятия излагаемого далее материала читателем, не являющимся специалистом по электромагнитным полям.

Классификация

Итак, к неионизирующим излучениям относятся:

  • электромагнитные излучения (ЭМИ) диапазона радиочастот,
  • постоянные и переменные магнитные поля (ПМП и ПеМП),
  • электромагнитные поля промышленной частоты (ЭМППЧ),
  • электростатические поля (ЭСП),
  • лазерное излучение (ЛИ).
  • Нередко действию неионизирующего излучения сопутствуют другие производственные факторы, способствующие развитию заболевания (шум, высокая температура, химические вещества, эмоционально-психическое напряжение, световые вспышки, напряжение зрения).

Т.к. основным носителем неионизирующего излучения является ЭМИ, большая часть реферата посвящена именно этому виду излучения.

    Немного больше об экологии

    Водоемы Омской области
    Вода - ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человек ...

    Современные теории получения экологически чистой энергии
    Человечество потребляет для своих нужд громадное количество энергии, и потребности в ней пока увеличиваются вдвое каждые 25 лет. За девяносто лет, прошедших с начала прошлого века, энергопотребление выросло более чем в 12 раз. Соответственно выросла и до ...