Экология. Атмосферный воздух

В Москве действует первая очередь экспериментальной системы АНКОС - А.

Кроме метеорологических параметров (направление и скорость ветра) они измеряют содержание в воздухе окиси углерода и двуокиси серы. Создана новая модификация станции “АНКОС - А”, которая определяет (кроме вышеупомянутых параметров) и содержание суммы углеводородов, озона и окислов азота.

Информация от автоматических датчиков тут же поступит в диспетчерский центр, и ЭВМ в считанные секунды обработает сообщения с мест. Они будут использоваться для составления своеобразной карты состояния городского воздушного бассейна.

И еще одно преимущество автоматизированной системы: она не просто будет осуществлять контроль, но и даст возможность научно прогнозировать состояние атмосферы в определенных районах города. А значение своевременного и точного прогноза велико. До сих пор фиксировали загрязнения, помогая тем самым устранять их. Прогноз позволит улучшить профилактическую работу, избежать .загрязнений атмосферы. Следить за чистотой воздуха - дело очень трудное. И прежде всего потому, что необходимы дистанционные методы исследования.

Первые попытки использовать световой луч для изучения атмосферы относятся к началу XX столетия, когда с этой целью был применен мощный прожектор. С помощью прожекторного зондирования в дальнейшем были получены интересные сведения о строении земной атмосферы. Однако только появление принципиально новых источников света - лазеров - позволило использовать известные явления взаимодействия оптических волн с воздушной средой для исследования ее свойств.

Что это за явления? Прежде всего к ним относится аэрозольное рассеяние. Распространяясь в земной атмосфере, лазерный луч интенсивно рассеивается аэрозолями - твердыми частицами, каплями и кристаллами облаков или туманов. Одновременно лазерный луч рассеивается и за счет колебаний плотности воздуха. Такой вид рассеяния называют молекулярным или релеевским - в честь английского физика Джона Релея, установившего законы рассеяния света.

В спектре рассеяния света, кроме линий, характеризующих падающий свет, наблюдаются дополнительные, сопровождающие каждую из линий падающего излучения. Различие в - частотах первичной и дополнительных линий характерно для каждого рассеивающего свет газа. Например, послав в атмосферу зеленый луч лазера, сведения об азоте можно получить, определив свойства возникающего красного излучения.

Остановимся на принципиальном устройстве лазерного локатора-лидара - прибора, использующего лазер для зондирования атмосферы.

Лидар по своему устройству напоминает радиолокатор, радар. Антенна радара принимает радиоизлучение, отраженное, например, от летящего самолета. А антенна лидара может принять световое лазерное излучение, отраженное не только от самолета, но и от инверсионного следа, возникающего за самолетом. Только антенна лидара представляет собой светоприемник - зеркало, телескоп либо объектив фотоаппарата, в фокусе которых расположен фотоприемник светового излучения.

Импульс лазера излучен в атмосферу. Длительность лазерного импульса ничтожна (в лидарах часто применяют лазеры с длительностью импульса, равной 30 - миллиардным долям секунды). Это означает; что пространственная протяженность такого импульса составляет 4,5 м. Лазерный луч, в отличие от лучей других световых источников, по мере распространения в атмосфере расширяется незначительно. Поэтому светящийся зонд - импульс лазера в каждый момент времени - информирует о всем, что встретилось на его пути. Информация поступает практически мгновенно на антенну лидара - скорость лазерного зонда равна скорости света. Например, с момента лазерной вспышки до регистрации сигнала, вернувшегося с высоты 100 км, пройдет меньше тысячной доли секунды.

Представим, что на пути лазерного луча находится облако. За счет повышенной концентрации частиц в облаке число световых фотонов, рассеянных назад к лидару, увеличится. При работе с электроннолучевым устройством оператор будет наблюдать характерный импульс, аналогичный импульсу от цели при радиолокационном обзоре. Однако облако представляет собой диффузную цель с распределенными в пространстве каплями воды или кристаллами льда. Расстояние до первого сигнала определяет величины нижней границы облачности, последующие сигналы свидетельствуют о толщине облака и его структуре. Основываясь на известных закономерностях, по сигналу рассеяния лазерного излучения можно определить распространение водности, получить сведения о кристаллах в облаке.

Перейти на страницу: 11 12 13 14 15 16 17

Немного больше об экологии

Современная экология и ее проблемы
Одной из примет нашего времени становится осоз­нание необходимости перемен в сложившихся стерео­типах отношений человека и природы. Главная идея этих отношений проста: не ждать милостей от приро­ды, а подчинять ее интересам развития общества. Но оказалось, что прир ...

Мониторинг гидросферы земли
Водная оболочка Земли - гидросфера играет важнейшую роль в существовании биосферы и человека. В статье приводится описание организации и современных методов наблюдений за компонентами гидросферы в атмосфере, Мировом океане, на поверхности суши и ее водных объектах, ...